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T helper 17 (Th17) cells belong to a recently identified T helper subset, in addition to the traditional Th1 and
Th2 subsets. These cells are characterized as preferential producers of interleukin-17A (IL-17A), IL-17F,
IL-21, and IL-22. Th17 cells and their effector cytokines mediate host defensive mechanisms to various infec-
tions, especially extracellular bacteria infections, and are involved in the pathogenesis of many autoimmune
diseases. The receptors for IL-17 and IL-22 are broadly expressed on various epithelial tissues. The effector
cytokines of Th17 cells, therefore, mediate the crucial crosstalk between immune system and tissues, and
play indispensable roles in tissue immunity.
Introduction
The T helper 1 (Th1) cell and Th2 cell paradigm, first proposed by

Mosmann and Coffman, has been used to explain how hosts

elicit different adaptive immune responses to eradicate the

evasion of various pathogens (Glimcher and Murphy, 2000;

Mosmann and Coffman, 1989). Upon first encounter of foreign

antigens presented by antigen-presenting cells (APCs), naı̈ve

CD4+ T cells can differentiate into either interferon-g (IFN-g)-pro-

ducing Th1 cells or IL-4-producing Th2 cells, and this differenti-

ation is largely controlled by various environmental factors, es-

pecially by signals coming directly from APCs (Glimcher and

Murphy, 2000). Proper T helper cell responses are essential for

the hosts to orchestrate sufficient defensive mechanisms to con-

trol infections. For example, Th1 cells enhance the cellular immu-

nity against virus or intracellular pathogens, such as Leishmania

major (Sacks and Noben-Trauth, 2002), whereas Th2 cells

are important for humoral immunity and control of helminth

infections (Anthony et al., 2007).

Uncontrolled and persistent effector T cell responses, how-

ever, can drive the onset of autoimmunity, allergy, or atopy.

Evidence from clinical observations and from studies on experi-

mental animals supports the idea that uncontrolled Th2 cell re-

sponses, as well downstream cytokines IL-4, IL-5, and IL-13,

are underlying the development of atopic diseases, such as

asthma (Cohn et al., 2004). In addition, abnormal Th1 cell re-

sponses have been demonstrated to mediate, at least in part,

many other autoimmune diseases, including psoriasis and

inflammatory bowel disease (IBD) (Bouma and Strober, 2003;

Lowes et al., 2007). It has also become clear, however, that

many complicated pathological situations cannot be simply ex-

plained by the Th1 cell and Th2 cell paradigm. Efforts to resolve

these issues in recent years have resulted in the discovery of

many new T helper cell subsets, including Treg cell and Th17

cell subsets (see commentary by Locksley [2008], in this issue

of Immunity).

Initially, Th1 cells had been speculated to play the major path-

ological functions in preclinical experimental allergic encephalitis
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(EAE) models, which were used broadly for studying human mul-

tiple sclerosis (MS), primarily based on the in vivo data in which

the IL-12 p40 subunit was either ablated or blocked (Kastelein

et al., 2007). This view has been dramatically changed after the

discovery of IL-23, a cytokine that consists of a unique p19 sub-

unit and shares a common p40 subunit with IL-12 (Oppmann

et al., 2000). In vivo studies from Cua and colleagues convinc-

ingly demonstrated that it was IL-23, but not IL-12, that played

an essential role in the pathogenesis of myelin oligodendrocyte

glycoprotein (MOG)-induced EAE (Cua et al., 2003) During the

late 1990s, the discovery of new cytokines was facilitated by

the human genome project. Many cytokines have been identi-

fied, including the IL-17-family cytokines and new cytokine

members in the IL-10 family (Pestka et al., 2004; Weaver et al.,

2007). Among these cytokines, IL-17A and IL-22 were soon real-

ized to be T cell cytokines and to have important functions in in-

flammatory responses (Dumoutier et al., 2000a; Yao et al., 1995).

In 2000, Infante-Duarte and colleagues suggested that IL-17A-

producing CD4+ T cells might represent a unique T helper cell

subset that was different from the classic Th1 cell and Th2 cell

subsets (Infante-Duarte et al., 2000). In their studies, they dem-

onstrated that naı̈ve T cells primed by lysate of B. burgdorfei de-

veloped a phenotype with much higher IL-17A production than

those from T cells primed under Th1 and Th2 conditions. They

suggested that IL-6 might play a role in the development of these

IL-17A-producing T helper cells (Infante-Duarte et al., 2000).

Consistent with these results, IL-17A produced by CD4+ T cells

is indispensable for host defense against Klebsiella pneumonia

infection, an extracellular bacterial infection that is not fully con-

trolled by either Th1 or Th2 cells (Ye et al., 2001). Gurney’s group

later established the potential link between IL-23 and these IL-

17A producing T cells in vitro by showing that IL-23 enhanced

IL-17 production from memory CD4+ T cells but not from naı̈ve

CD4+ T cells (Aggarwal et al., 2003). This link was further con-

firmed by the elegant in vivo experiments performed by Cua’s

group, who demonstrated that IL-23-primed Th17 cells were

much more pathogenic in EAE models than were IL-12-primed
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Th1 cells (Langrish et al., 2005). On the basis of these pioneering

studies, Th17 cells have been quickly recognized as a distinct

T helper cell population that plays a crucial roles in CD4+

T cell-mediated adaptive immunity. In the past two years,

a wealth of research has further revealed the regulatory and

functional roles of these Th17 cells in both mouse and human

systems. In addition to IL-17A, IL-17F, IL-22, and IL-21 have all

been identified as effector cytokines that are preferentially pro-

duced by this T cell subset. In this review, we focus our discus-

sion on the biological functions of these effector cytokines of

Th17 cells in inflammatory responses.

IL-17A and IL-17F

IL-17A was originally cloned and described by Rouvier et. al. and

named CTLA8 (Rouvier et al., 1993). It was subsequently re-

named IL-17 and, more recently, IL-17A. IL-17A was also cloned

by Immunex and found to share 58% homology with an open

reading frame of the T-lymphotropic Herpesvirus Samirii virus

(viral IL-17). IL-17A is the founding member of the IL-17 family

of cytokines, which has five other family members, designated

IL-17A–F. IL-17A is disulfide-linked homodimeric glycoprotein,

consisting of 155 amino acids (Yao et al., 1995), exerting part

of its actions as a homodimer with a molecular weight around

35 kiloDalton (kDa). All members of the IL-17 family show conser-

vation in their c-termini with five spatially conserved cysteine res-

idues, accounting for a characteristic cysteine-knot formation for

IL-17A and F (Hymowitz et al., 2001). IL-17F shares the greatest

homology (55%) with IL-17A. Both IL-17A and IL-17F are pro-

duced by Th17 cells, whereas the other IL-17 family members,

IL-17B, IL-17C, and IL-17D, are produced by non-T cell sources.

IL-17A and IL-17F can either exist as IL-17A homodimers and IL-

17F homodimers or as IL-17A-IL-17F heterodimers (Liang et al.,

2007). IL-17A homodimers are very efficient in inducing chemo-

kine production by epithelial cells; Among these isoforms and

controlling for molarity, IL-17A homodimers show the greatest

potency in inducing chemokine expression in epithelial cells,

followed by IL-17A–F heterodimers, followed by IL-17F homo-

dimers (Liang et al., 2007). Using neutralizing antibodies for

these specific isoforms, Liang et al. showed that neutralization

of IL-17A homodimers strongly blocked neutrophilic airway in-

flammation mediated by adoptive transfer of ovalbumin-specific

polarized Th17 cells and airway challenge with antigen. Again,

neutralization of the IL-17A–F heterodimers shows intermediate

efficacy in blocking airway inflammation, and neutralization of

the IL-17F homodimers shows the least efficacy. Thus, in this

model of airway-inflammation-blocking strategies targeting

IL-17A and IL-17A–F, heterodimers might be the most effica-

cious (Liang et al., 2007). The contributions of these individual

isoforms in autoimmune diseases such as EAE, colitis, or arthritis

remain to be determined.

IL-17RA, IL-17RC, and Signaling Pathways

The originally described IL-17 receptor (IL-17RA) (Yao et al.,

1995) is a Type I transmembrane protein consisting of a 293

amino acid extracellular domain, a 21 amino acid transmem-

brane domain, and a long 525 amino acid cytoplasmic tail (Yao

et al., 1995). Its mRNA is extensively expressed in the lungs, kid-

neys, liver, and spleen, as well as in isolated fibroblasts, epithelial

cells, mesothelial cells, and various myeloid cells from rats and

mice (Yao et al., 1995). Among human cells, the mRNA for

IL-17RA can be detected in epithelial cells, fibroblasts, B and
T lymphocytes, myelomonocytic cells, and marrow stromal cells

(Silva et al., 2003). The IL-17RA protein is present on peripheral

blood T lymphocytes and in vascular endothelial cells from hu-

mans (Moseley et al., 2003). Mice with a homozygous deletion

of the gene encoding IL-17RA have no detectable binding of

IL-17A in B or T lymphocytes (Ye et al., 2001). Moreover, homo-

zygous deletion of IL-17RA abrogates the increase in splenic

neutrophil progenitors resulting from the overexpression of

IL-17A (Ye et al., 2001) or IL-17F (unpublished observations). In

human epithelial cells, a monoclonal antibody against IL-17RA

effectively neutralizes both IL-17A- and IL-17F-induced expres-

sion of granulocyte-colony stimulating factor (G-CSF) and Che-

mokine (C-X-C motif) ligand 1 (CXCL1). However, a soluble

form of IL-17RA is only effective in partially inhibiting IL-17A ac-

tivity and is ineffective in blocking G-CSF and CXCL1 induced by

IL-17F, suggesting that the cell surface receptor complex out-

competes soluble IL-17RA (Jones and Chan, 2002; McAllister

et al., 2005). Human IL-17RA binds IL-17A with a relatively low

affinity. The binding potency is approximately one-tenth the po-

tency of the cytokine response (IL-6 release) to IL-17A, which led

to the hypothesis that there were likely additional receptors

involved in IL-17A-induced cell signaling (Yao et al., 1995).

IL-17RC, another Type I transmembrane receptor, is expressed

in human prostate, cartilage, kidney, liver, heart, and muscle

(Haudenschild et al., 2002; Moseley et al., 2003). Toy and col-

leagues have recently shown that IL-17RA and IL-17RC can be

coimmunopreciptated and that the cotransfection of IL-17RA

and IL-17RC results in effective binding of IL-17A and IL-17F

and signaling as measured by the induction of CXCL1 (Toy

et al., 2006). Furthermore, IL-17RC has been shown to be critical

for binding and signaling in response to IL-17F homodimers. Im-

portantly, fibroblasts generated from IL-17RC-deficient mice fail

to respond to either IL-17A or IL-17F (Zheng et al., 2008). IL-17RC

undergoes significant alternative splicing, with some forms that

might still be capable of ligand binding and being secreted,

thus potentially inhibiting IL-17 signaling (Haudenschild et al.,

2002; Moseley et al., 2003). Thus, both IL-17RA and IL-17RC

chains are critical for signaling in response to IL-17A and IL-17F.

As mentioned above, both IL-17A and IL-17F induce granul-

poietic factors (G-CSF and stem cell factor) and CXC chemo-

kines: CXCL1, CXCL2, and CXCL5 in mouse fibroblasts and

epithelial cells; and CXCL1, CXCL2, CXCL5, and CXCL8 in hu-

man epithelial cells (Fossiez et al., 1996; Jones and Chan,

2002; Kawaguchi et al., 2001; Laan et al., 1999; Laan et al.,

2001; Prause et al., 2003). In addition to CXC chemokines and

G-CSF, IL-17A can increase mRNA and protein for the mucins,

MUC5AC and MUC5B, in primary human bronchial epithelial

cells in vitro (Chen et al., 2003). IL-17A also induces the expres-

sion of human beta defensin-2 (Kao et al., 2004) and CCL20 in

lung epithelial cells (Huang et al., 2007).

Although the transcription factor NF-kB has been implicated in

IL-17R signaling before, the link between IL-17R and activation

of mitogen-activated protein kinases (MAPKs) and NF-kB has

only recently been elucidated. MAP kinases, in particular p38

and extracellular signal-regulated kinase (ERK), are involved as

mediators in IL-17A-induced release of C-X-C chemokines in hu-

man bronchial epithelial cells in vitro (Laan et al., 2001). Further-

more, the production of CXCL8 in human synoviocytes is also

dependent on the NF-kB and the PI-3 kinase-Akt pathway
Immunity 28, April 2008 ª2008 Elsevier Inc. 455
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(Hwang et al., 2004). It has been known for some time that the

scaffold protein Traf6 is required for IL-17R signaling, but there

are no Traf6-binding sites in the cytoplasmic domain of IL-

17RA. Computer-database analysis showed that the members

of the IL-17R family contain SEFIR domains, which share homol-

ogy with Toll-IL-1R domains (Novatchkova et al., 2003). NF-kB

activator 1 (Act1), which is an adaptor protein critical for both

B cell-activating factor belonging to the TNF family (BAFF) and

CD40 signaling, contains SEFIR- and Traf6-binding motifs. In-

deed, Act1 binds to the cytoplasmic domain of IL-17RA (Chang

et al., 2006b) and is a functional adaptor critical for IL-17RA sig-

naling and the development of EAE and dextran-sodium-sulfate-

induced colitis (Qian et al., 2007). TNF-alpha markedly syner-

gizes with IL-17A and IL-17F in inducing G-CSF, CXCL1, and

CXCL8 production by epitheilum (Jones and Chan, 2002;

McAllister et al., 2005), which is independent of altering IL-

17RA expression by TNF-alpha. Gaffen et al. have shown that

TNF-alpha can synergize with IL-17A in the nuclear translocation

of CCAAT/enhancer-binding protein d (CEBPd) (Shen et al.,

2006), which explains in part the synergistic affects of IL-17

and TNF-a on CXC chemokine production. Additionally, IL-17A

can also augment CXCL1 and G-CSF production by stabilizing

the mRNAs encoding these proteins (Cai et al., 1998; Hartupee

et al., 2007). In fact, using a HeLa cell reporter assay, Hartupee

and colleagues found that the dominant effect of IL-17 was to

stabilize the mRNA for these molecules rather than to alter tran-

scription. Moreover, this effect is independent of TNF-a (Hartu-

pee et al., 2007). Thus, there has been much learned regarding

IL-17 ligand and receptor signaling; however, the precise mech-

anisms of IL-17 synergy with TNF-a and IL-22 remains to be

determined. Moreover, there is also IL-17-regulated gene ex-

pression that occurs in the absence of Act1, and the mechanism

underlying this needs to be further defined.

Role of IL-17 in Autoimmunity: RA, MS-EAE, Psoriasis,

and IBD

The role of IL-17 family members in arthritis has recently been

extensively reviewed (Lubberts, 2003). Abrogation of IL-17A

prior to disease onset attenuates antigen-induced arthritis in

mice (Bush et al., 2002; Lubberts et al., 2004). Also, treatment

with IL-17A antibodies after the onset of experimental, colla-

gen-induced arthritis decreases joint damage and histologic

destruction of cartilage and bone, and it reduces IL-6 in mouse

serum as well (Lubberts et al., 2004). Thus, as judged from these

studies, IL-17A and IL-17F might contribute to the erosion of

cartilage and bone in joint disease. It has also recently been

demonstrated that IL-17 regulates germinal-center formation,

as well as auto-antibody production (Hsu et al., 2008). Consis-

tent with these ideas, the loss of the proximal regulator IL-23 is

protective in autoimmune arthritis in mice, whereas the loss of

IL-12 is associated with exacerbated arthritis as well as an

increased number of IL-17A-secreting T lymphocytes (Murphy

et al., 2003).

IL-17A is upregulated in central nervous system lesions of pa-

tients with multiple sclerosis (MS) (Lock et al., 2002). Moreover,

IL-23, rather than IL-12, is more critical for the development of

EAE in mice, and neutralization of IL-17 reduces the severity of

EAE (Cua et al., 2003). In addition, IL-17A-deficient mice show

delayed onset and reduced maximum-severity scores in EAE

(Komiyama et al., 2006). Tzartos and collaborators have shown
456 Immunity 28, April 2008 ª2008 Elsevier Inc.
the presence of IL-17-positive perivascular lymphocytes in brain

lesions from patients with active MS and a reduction of these

cells in quiescent MS (Tzartos et al., 2008). In this study, the

investigators observed expression of IL-17 in CD8+ T cells in

addition to CD4+ T cells, and expression was also observed in

astrocytes and oligodendrocytes.

Teunissen and colleagues described the upregulation of IL-

17A in psoriatic skin in 1998 and demonstrated that IL-17A in-

duces intercellular adhesion molecule-1 (ICAM1), IL-6, and IL-8

in human skin keratinocytes (Teunissen et al., 1998). IL-22 also

synergizes with IL-17 in the induction of human beta-defensin

2, S100 calcium-binding protein A9 (S100A9, calgranulin B),

and additively enhances the expression of S100A7 (psoriasin)

and S100A8 (calgranulin A), which have also have been shown

to be upregulated in psoriatic skin (Liang et al., 2006). These

S100 proteins are involved in the regulation of a number of cellu-

lar processes, such as cell cycle progression and differentiation,

and the calgranulin proteins have been shown to have both an-

tibacterial and fungicidal activities. Wilson and colleagues stud-

ied Th17 cells in human psoriatic skin and found that these cells

express IL-23R, IL-17A, IL-17F, IL-26, and CCL20 as well as the

transcription factor RORgt (Wilson et al., 2007). These authors

also showed upregulation of transcripts for IL1B, a critical factor

in human Th17 cell differentiation, as well as for IFNG (Wilson

et al., 2007).

Patients with inflammatory bowel disease display an ele-

vated expression of IL-17A mRNA and intracellular protein in

the intestinal mucosa (Fujino et al., 2003). Specifically, this is

true in the colonic mucosa of patients with either ulcerative co-

litis or Crohn’s disease, when compared with corresponding

samples from normal subjects or patients with infectious or is-

chemic colitis (Fujino et al., 2003). IL-17A expression is aug-

mented in gut tissue and detectable in the serum of patients

with active exacerbations of inflammatory bowel disease. An-

nunziato, studying humans with Crohn’s disease, observed

the presence of IL-17-producing T cells in the gut, some of

which produced IL-17 and IFN-g (Annunziato et al., 2007).

These human IL-17-producing cells also express IL-23R and

CCR6 (Annunziato et al., 2007). In a model of TNBS-induced

colitis, mice deficient in IL-17RA expression show substantially

reduced PMN emigration into the colon, as well as reduced

amounts of CXCL2 (Zhang et al., 2006). Blockade of IL-23 is ef-

fective in preventing colitis in IL-10-deficient mice, through the

inhibition of both IL-17 and IL-6 (Yen et al., 2006). Moreover,

using a T cell-independent model of colitis, Uhlig and col-

leagues showed that IL-23 regulates intestinal inflammation in

response to CD40 activation and that this was associated

with downregulation of IL-17 in anti-IL-23-treated mice, sug-

gesting the contribution of non-T cell sources of IL-17 in this

model (Uhlig et al., 2006).

In conclusion, the IL-17 pathway plays an essential patholog-

ical role in many autoimmune diseases. Efficacy, safety, and tol-

erability studies with AIN457, a monoclonal anti-IL-17 antibody,

are underway for Crohn’s disease and psoriasis that are resistant

to current therapies, and the results of these clinical trials will

clearly advance our understanding of the contributions of IL-17

to these diseases. Specifically, it will be important to understand

whether anti-IL-17 strategies will have any benefit or enhanced

safety compared to anti-TNF strategies, given the cooperative
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nature of TNF and IL-17 in the induction of ICAM1 and CXC

chemokines in epithelial cells.

Role of IL-17 in Granulopoiesis and Bone Marrow

Recovery after Irradiation

One of the earliest documented activities of IL-17A was the in-

crease of G-CSF in human bone marrow stromal cells, which re-

sulted in the differentiation of CD34+ progenitor into neutrophil

progenitors in vitro (Fossiez et al., 1996). Interestingly, unlike

IL-17A, IL-17F is unable to support proliferation of granulocyte

precursors in vitro (Starnes et al., 2001) despite a similar potency

as IL-17A in the recruitment of neutrophils into the lungs of mice

(Hurst et al., 2002). Overexpression of IL-17A systemically re-

sults in massive extramedullary hematopoiesis in mice, caused

by the induction of endogenous G-CSF and stem cell factor

(SCF) (Schwarzenberger et al., 2000; Schwarzenberger et al.,

1998) IL-17A has also been shown to be critical for the aug-

mented G-CSF amounts, granulopoiesis, and elevated neutro-

phil counts in peripheral blood of leukocyte-adhesion-mole-

cule-deficient mice (Forlow et al., 2001). This IL-17 production

is regulated by IL-23 and phagocytosis of apoptotic neutrophils

in the lamina propria (Stark et al., 2005). The source of IL-17A in

these mice are a variety of T cell subsets, of which 60% are IL-

17A-positive cells being gdgT cells, 25% are NKT-like cells,

and 15% are CD4+ T cells (Ley et al., 2006). Although there is

a mild reduction of mature neutrophils in IL-17RA-deficient

mice, these mice show markedly impaired recovery of their neu-

trophil counts in response to sublethal irradiation (Tan et al.,

2006). Taken together, these data suggest that IL-17 is critical

for the regulation of granulopoiesis under physiological stress.

Role of IL-17 in Host Defense

IL-17RA-deficient mice show defective G-CSF responses,

granulopoiesis, and enhanced susceptibility to experimental

K. pneumoniae pulmonary infection (Ye et al., 2001) However,

the enhanced susceptibility to K. pneumoniae cannot be fully

restored by the restoring of granulpoietic progenitors with exog-

enous recombinant G-CSF (unpublished observations). Thus,

despite treatment with G-CSF, neutrophil recruitment is not re-

stored in the pulmonary tissue compartment, likely due to the de-

fective CXC chemokine production that is seen in these mice

(Ye et al., 2001) or in mice treated with IL-17A antibodies (Miya-

moto et al., 2003). Similar to IL-17RA-deficient mice, IL-17A-

deficient mice are also susceptible to K. pneumoniae and

show reduced G-CSF and CXCL1 in the lung in response to

this infection (Figure 1) (Aujla et al., 2008). Furthermore, endoge-

nous IL-17A, released mainly by CD4+ T lymphocytes, also plays

a critical role in the orchestration of the formation of intra-ab-

dominal abscesses and neutrophil accumulation in response to

the gram-negative bacteria Bacteroides fragilis in vivo (Chung

et al., 2003). IL-17RA-deficient mice are also susceptible to

Toxoplasmosis gondii (Kelly et al., 2005) and Candida albicans in-

fection (Huang et al., 2004). However, IL-17RA-deficient mice do

not show increased susceptibility to infections with the intracel-

lular pathogens Mycobacterium tuberculosis or Listeria monocy-

togenes (Aujla et al., 2008). In the latter case, IL-17RA signaling is

dispensable for the IFN-g-mediated immune responses to

L. monocytogenes. Although IL-17RA signaling is not required

for the primary control of M. tuberculosis, enhanced recruit-

ment of Th1 effectors in mice vaccinated with antigens from

M. tuberculosis is mediated by IL-17A via the regulation of the
CXCR3 ligands, MIG, IP-10 and I-TAC, which are critical for

the recruitment of Th1 cells to the granuloma (Khader et al.,

2007). Thus, these findings suggest that IL-17A and IL-17RA

signaling is more critical for extracellular than for intracellular

pathogens.

However, the roles of IL-17A and IL-17F in fungal infection re-

main controversial. It has recently been shown that IL-17A neg-

atively regulates Th1 responses to A. fumigatus and C. albicans

and permits more extensive growth of fungi in vivo (Zelante et al.,

2007). Moreover, IL-17A inhibits antifungal activity in vitro. How-

ever, these studies were performed with commercial prepara-

tions of IL-17A produced in E. coli, which have different glycosyl-

ation patterns from eukaryotically produced IL-17A and also

contain trace amounts of LPS. Therefore, it would be important

to confirm that these effects are truly IL-17RA dependent and

to ascertain whether the results can be extrapolated to human

neutrophils. In a follow-up paper, Romani and colleagues dem-

onstrated that the increased pathology induced by A. fumigatus

infection in mice lacking functional NADPH oxidase led to de-

fective function of indoleamine 2,3-dioxygenase (IDO), which

resulted in increased IL-23 expression as well as in augmented

recruitment of Vg1 gd T cells expressing IL-17 (Romani et al.,

2008). Neutralization of IL-17 in NADPH-oxidase-deficient mice

reduces the enhanced pathology in response to A. fumigatus

challenge (Romani et al., 2008). Both IL-23 and IL-17 have also

been found to be elevated in cystic fibrosis (CF) patients who

are colonized with mucoid strains of P. aeruginosa (Dubin and

Kolls, 2007). Modeling chronic P. aeruginosa infection with

bacteria containing agarose beads demonstrates that deficiency

of IL-23 improves the immunopathology induced by chronic

P. aeruginosa infection. In this model, IL-23 is not required to

Figure 1. Functions of IL-17 and IL-22 during K. pneumonia Infection
in the Lung
IL-17 and IL-22 are induced rapidly in experimental bacterial pneumonia and
are produced by several T cell populations in the lung, including gd-T cells
and NKT cells as well as effector memory ab CD4+ T cells. IL-17 signaling reg-
ulates granulopoiesis, through the regulation of G-CSF, as well as neutrophil
recruitment, via the regulation of CXC chemokines by epithelial cells. IL-22
and IL-17 induce antiamicrobial peptides from the same target cells, and IL-
22 can augment epithelial repair. This cooperative induction of neutrophil re-
cruitment and this antimicrobial-peptide production augment epithelial-barrier
function and are critical for mucosal host defense against Gram-negative
bacterial pneumonia.
Immunity 28, April 2008 ª2008 Elsevier Inc. 457
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control bacterial growth and the decrease in inflammation is as-

sociated with significantly reduced expression of IL-17. Thus, in

certain infections, IL-23 and IL-17 might contribute to tissue pa-

thology as opposed to host defense. Moreover, the contributions

of IL-17F in both host defense and immunopathology need to be

determined.

IL-21

The discovery of IL-21 receptor (IL-21R) precedes the discovery

of IL-21. IL-21R was discovered as a type I cytokine receptor

(Ozaki et al., 2000; Parrish-Novak et al., 2000), which was orig-

inally termed ‘‘novel interleukin receptor’’ (NILR) (Ozaki et al.,

2000). It is most similar to the IL-2 receptor b chain and is lo-

cated on human chromosome 16, immediately adjacent to the

gene encoding IL-4 receptor a chain (Ozaki et al., 2000; Par-

rish-Novak et al., 2000). The ligand for IL-21R, IL-21, was sub-

sequently discovered with a functional ligand-screening ap-

proach based on expression of the receptor (Parrish-Novak

et al., 2000). IL-21 is most similar to IL-2, IL-4, and IL-15 (Par-

rish-Novak et al., 2000), which are cytokines with receptors

that contain the common cytokine-receptor g chain (gc). Corre-

spondingly, the functional IL-21 receptor for IL-21 consists of

IL-21R and gc (Asao et al., 2001; Habib et al., 2002). Depending

on the cell type, signaling through the IL-21R and gc receptor

complex can activate the downstream targets, including Janus

activated kinase 1 (Jak1), Jak3, signal transducers and activa-

tors of transcription 1 (Stat1), Stat3, Stat4, and Stat5 (Mehta

et al., 2004).

Role of IL-21 in Lymphocyte Regulation

IL-21 is produced mainly by CD4+ T cells (Parrish-Novak et al.,

2000), as well as by NKT cells (Coquet et al., 2007). Since its dis-

covery, IL-21 has been proposed to be an effector cytokine that

is preferentially produced by various T helper cell subsets, in-

cluding Th2 cells (Wurster et al., 2002), and T follicular helper

(TFH) cells, a population of follicular CD4+ T cells that function

in B cell help but do not have a Th1 or Th2 cell phenotype (Bryant

et al., 2007; Chtanova et al., 2004). IL-21 also promotes Th1 re-

sponses (Monteleone et al., 2005; Strengell et al., 2002). Most re-

cently, however, several groups simultaneously identified that

IL-21 was also produced by Th17 cells and exerted critical func-

tions in Th17 cell development (Korn et al., 2007; Nurieva et al.,

2007; Zhou et al., 2007).

IL-21R is expressed on T cells, B cells, NK cells, dendritic cells

(DCs), macrophages, and epithelial cells (Brandt et al., 2003a;

Caruso et al., 2007; Distler et al., 2005; Jin et al., 2004; Ozaki

et al., 2000; Parrish-Novak et al., 2000), indicating a broad range

of actions for IL-21. IL-21 is indispensable in the regulation of

various immune responses. Both the Th1 cytokine IFN-g and

Th2 cytokine IL-4 have important functions in the promotion of

their own expression from Th1 and Th2 cells, respectively. Sim-

ilarly, IL-21 functions in an autocrine loop to amplify the Th17 cell

response and induce its own expression (Figure 2) (Korn et al.,

2007; Nurieva et al., 2007; Zhou et al., 2007). IL-21, like IL-6,

can favor the generation of Th17 cells over Treg cells. For both

IL-21 and IL-6, this switch seems to be mediated by STAT3

and RORgt (Korn et al., 2007; Nurieva et al., 2007; Zhou et al.,

2007).

In addition, IL-21 has a much broader function beyond the reg-

ulation of Th17 cells. IL-21 can promote both humoral responses

and cellular immunity, which are traditionally considered to be
458 Immunity 28, April 2008 ª2008 Elsevier Inc.
mediated by Th2 cytokines, such as IL-4, and Th1 cytokines,

such as IFN-g, respectively. First, IL-21 plays a critical role in

B cell function (Figure 2). Although IL-21R deficient mice show

no defects in B cell subsets and development, they have a re-

duced amount of serum IgG1 and an increased amount of IgE

(Ozaki et al., 2002). Furthermore, immunization of these mice

with T cell-dependent antigens results in lower levels of anti-

gen-specific IgG1 but substantially higher amounts of IgE (Ozaki

et al., 2002). Consistently, administration of IL-21 to wildtype

mice at the time of immunization can lead to decreased anti-

gen-specific IgE titers (Suto et al., 2002). IL-21 can serve as

a complex regulator of B cell maturation and terminal differenti-

ation by inducting the expression of transcription factors, such

as Blimp-1 and Bcl-6 (Ozaki et al., 2004).

Second, IL-21 can also augment cellular immunity by promot-

ing the functions of Th1 cells, CD8+ cells, and NK cells. IL-21

stimulates IFN-g production from both Th1 cells and NK cells

(Monteleone et al., 2005; Strengell et al., 2002). Moreover, IL-

21 synergizes with IL-15 in regulation of the proliferation and ac-

tivation of both naı̈ve and memory CD8+ T cells (Kasaian et al.,

2002; Zeng et al., 2005). In addition, IL-21 also modulates the

functional development of NK cells. IL-21 was originally shown

to enhance in vitro generation of NK cells from human bone-mar-

row progenitors (Parrish-Novak et al., 2000). Studies with human

cord-blood precursors confirm that IL-21 is capable of inducing

an accelerated NK cell maturation and acquisition of a mature

killer Immunoglobin (Ig)-like receptor (KIR) repertoire when

added to cultures of CD34+ Lin� cells supplemented with IL-

15, Flt3-L (Fetal liver tyrosine kinases 3-ligand), and SCF (stem

cell factor) (Sivori et al., 2003). The IFN-g production by NK cells

is also synergistically upregulated in the presence of IL-21 and

IL-15 (Habib et al., 2002). Interestingly, IL-21R-deficient mice

have normal numbers of fully functional NK cells (Kasaian

et al., 2002; Ozaki et al., 2002), indicating that IL-21 is not re-

quired for the earliest commitment of NK cell lineage. But once

committed immature NK cells are generated, IL-21 has a bi-

phasic effect on their growth: Low doses of IL-21 increase the

proliferative responses of these cells, whereas high doses of

IL-21 inhibit proliferation (Toomey et al., 2003). IL-21 also has

effects on mature NK cells, including effects on both proliferation

and survival as well as on NK cell-specific surface receptor

(Brady et al., 2004; Gays et al., 2005). Finally, IL-21 can induce

an inhibitory DC phenotype (Brandt et al., 2003a; Brandt et al.,

2003b) while augmenting proliferation and/or differentiation of

monocyte-macrophage and granulocyte lineages (Wang et al.,

2003).

In conclusion, IL-21 has clearly pleiotropic functions on vari-

ous immune cells. Its role on nonimmune cells, however, also

cannot be ignored. Recent studies have shown that T cell-

derived IL-21 can act on intestinal fibroblast and epithelia cells

to synthesize matrix metalloproteinases (MMPs), which then

mediate mucosal degradation (Caruso et al., 2007; Monteleone

et al., 2006).

Role of IL-21 in Inflammation

In view of its role in controlling a complex range of immune

components through either positive or negative regulation, the

IL-21 pathway might also be involved in human autoimmune dis-

eases. Preclinical and clinical data suggest a pathological role

for IL-21 in many human diseases, including human systemic
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lupus erythematosus (SLE), MS, type I diabetes, and IBD. First,

polymorphisms of IL-21 have been revealed to genetically asso-

ciate with human SLE (Sawalha et al., 2008). In the BXSB.B6-

Yaa+ mouse model of SLE, increased expression of IL-21 has

been detected (Ozaki et al., 2004), consistent with the increased

Ig amounts in the mice and the role of IL-21 in B cells. A ring-

type ubiquitin ligase, roquin, has been identified as playing an

important role in the repression of inducible costimulator

(ICOS) and IL-21. A mutation disrupting roquin function not

only increases the expression of ICOS and IL-21 but also results

in the development of lupus-like autoimmune phenotypes in

mice (Vinuesa et al., 2005). Moreover, blocking of the IL-21

pathway ameliorates the autoimmune symptoms in a mouse

model of SLE (Herber et al., 2007). Second, in the nonobese di-

abetic (NOD) mouse model, one of the genetic loci that are as-

sociated with disease is the insulin-dependent diabetes sus-

ceptibility 3 (Idd3) locus that contains the genes encoding

both IL-21 and IL-2 (Denny et al., 1997). NOD mice have in-

creased expression of IL-21, and it has been suggested that

this promotes the homeostatic proliferation of an autoreactive

CD8+ T cell population (King et al., 2004). Third, in the EAE

model, IL-21 administration before induction of EAE enhances

the inflammatory influx into the central nervous system as well

as the severity of EAE, whereas no such effects are observed

when IL-21 is administered after EAE progresses (Vollmer

et al., 2005). Although in this study the ability of IL-21 to exac-

erbate disease is attributed to IL-21-activated NK cells, recent

studies have indicated a role for IL-21 in the induction and

expansion of Th17 cells in this EAE model (Korn et al., 2007;

Nurieva et al., 2007). Finally, IL-21 is involved in the crosstalk

between nonimmune cells and immune cells in the gut, as we

discussed, suggesting that T cell-derived IL-21 could be asso-

ciated with gastric inflammation. For example, in celiac disease,

Figure 2. Potential Functions of IL-17, IL-22, and IL-21
during C. rodentium Infection in the Colon
During the early phase of C. rodentium infection, the invasion
of attaching-effacing bacteria results in the induction of IL-23.
IL-23 promotes early IL-22 production in innate immune cells,
especially DCs. IL-22 directly acts on colon epithelial cells to
induce antimicrobial peptides, such as Reg-family proteins,
and chemokines that recruit leukocytes to the site of infection.
IL-22 plays an indispensable role during the early phase of in-
fection in protection of the integrity of the colon epithelial layer
and prevention of systemic spreading of the bacteria. In the
late phase of infection, the adaptive immunity is essential for
the final eradication of the bacteria from the colon. Th17 cells
and the effector cytokines IL-17 and IL-21 might have impor-
tant functions during this phase. Both IL-17 and IL-21 can help
the formation of lymph aggregates in the colon and promote
the production of bacterial-specific antibodies, which kill and
eliminate bacteria.

genetic studies have identified risk variants in the

region harboring the IL21 gene (van Heel et al.,

2007), and enhanced IL-21 mRNA and protein ex-

pression are seen in duodenal samples from un-

treated celiac disease patients (Fina et al., 2007).

Furthermore, enhanced IL-21 expression is also

detected in biopsies from patients suffering from

Crohn’s diseases (Monteleone et al., 2005) and

Helicobacter pylori infection (Caruso et al., 2007). In summary,

these studies support an essential role of IL-21 in the pathogen-

esis of many autoimmune diseases.

IL-22

IL-22 is one of the IL-10-family cytokines, which also include

IL-10, IL-19, IL-20, IL-24, and IL-26, as well as more distally re-

lated IL-28 and IL-29. IL-22 was first identified as an IL-10-

related T cell-derived inducible factor (IL-TIF) from a lymphoma

cell line treated with IL-9 by use of a cDNA subtractive technique

(Dumoutier et al., 2000a). IL-22R and IL-10R2 were soon identi-

fied as the heterodimeric receptor complex for the function of IL-

22 (Kotenko et al., 2001a; Xie et al., 2000). Later, IL-22R was also

found to pair with the IL-20R2 chain to form a different receptor

complex, which together with IL-20R1 and IL-20R2 served as the

functional receptors for IL-20 and IL-24 signaling (Dumoutier

et al., 2001a; Wang et al., 2002). IL-22R, IL-20R1, and IL-20R2

all belong to the class II cytokine-receptor family (Pestka et al.,

2004). Genome-wide searching for novel members of this recep-

tor family lead to the discovery of a soluble receptor: IL-22BP, or

IL-22RA2 ((Dumoutier et al., 2001b; Kotenko et al., 2001b; Xu

et al., 2001). IL-22BP shares substantial sequence homology

with IL-10R-family receptors, especially IL-22R, but it lacks the

hydrophobic transmembrane domain. In vitro, IL-22BP binds

to IL-22 and neutralizes its biological activities.

The tertiary structure of IL-22 is different from that of IL-10 de-

spite their sequence homology. Unlike IL-10, IL-22 does not form

an intimate intertwined dimer, and it might be able to interact with

its receptor as a monomer (Nagem et al., 2002). Upon binding to

the receptor complex, IL-22 induces the phosphorylation of tyro-

sine kinases Jak1 and Tyk2, which initiates the signaling cascade

through activation of Stat3 and, to a lesser extent, Stat1 and Stat5

(Dumoutier et al., 2000a; Lejeune et al., 2002; Xie et al., 2000). In

addition, IL-22 has also been reported to activate three major
Immunity 28, April 2008 ª2008 Elsevier Inc. 459
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MAP kinase pathways: the MEK-ERK-RSK pathway, the JNK-

SAPK pathway, and the p38 pathway (Lejeune et al., 2002).

Cellular Sources and Regulation of IL-22

Early studies suggested that leukocytes, especially T cells, were

the likely cellular sources of IL-22 (Dumoutier et al., 2000a; Xie

et al., 2000). RT-PCR-based analysis reveals that upregulation

of IL-22 transcripts are detected in anti-CD3-activated T cells

and IL-2- or IL-12-stimulated NK cells (Wolk et al., 2002). IL-22

production by activated memory CD4+ T cells is much higher

than that from activated naı̈ve T cells. There is also greater induc-

tion of IL-22 under Th1 cell differentiation conditions than there is

under Th2 cell differentiation conditions. The emergence of the

Th17 cell subset prompted several groups to examine the pro-

duction of IL-22 by these cells (Chung et al., 2006; Liang et al.,

2006; Zheng et al., 2007). Although Th1 cells make more IL-22

as compared to Th2 cells or undifferentiated T cells, Th17 cells

are clearly the dominant IL-22 producers by far, as demon-

strated at both the mRNA and protein levels. These data un-

equivocally establish that IL-22 is another effector cytokine

produced by Th17 cells.

The coexpression of IL-17 and IL-22 in Th17 cells suggests

that the pathways that regulate these two cytokines might be

very similar. Detailed analysis, however, demonstrates some dif-

ferences between the inductions of these two cytokines (Zheng

et al., 2007). First, although IL-23 is insufficient to induce de novo

IL-17 production from naı̈ve CD4+ T cells, IL-23 alone promotes

IL-22 production from many different immune cell types. Sec-

ond, in contrast to the induction of IL-17, the induction of IL-22

does not require TGF-b. IL-6 alone is sufficient for the induction

of IL-22 from naı̈ve CD4+ T cells. The molecular basis of these

differences is currently unclear. Nonetheless, the differential reg-

ulation of these two cytokines could have important implications

for their in vivo functions during different disease processes. Al-

though both IL-6 and IL-23 stimulate IL-22 production in vitro

(Zheng et al., 2007), only IL-23 seems to be indispensable in

vivo for IL-22 induction under several infectious or autoim-

mune-disease conditions (Aujla et al., 2008; Zheng et al.,

2008). IL-6 is not essential for IL-22 induction, at least in ConA-

induced hepatitis and C. rodentium infection models (Zenewicz

et al., 2007; Zheng et al., 2008). It is, however, required for max-

imal IL-17 production during C. rodentium infection in the colon

(Zheng et al., 2008).

IL-23 also induces IL-22 production from CD8+ T cells and gd

T cells in addition to that from CD4+ T cells (Zheng et al., 2007).

Besides cytokines, a cell-surface molecule called nectin-like

protein 2 (Ncl2) is expressed on a subset of DCs and promotes

IL-22 production from CD8+ T cells through its interaction

with an immunoglobulin-superfamily transmembrane protein,

CRTAM (Galibert et al., 2005). Strikingly, CD4+ T cells from

CRTAM-deficient mice have compromised IFN-g, IL-22, and

IL-17 production, as well as defects in cell polarity, during activa-

tion and differentiation (Yeh et al., 2008). Furthermore, although

LPS is not able to stimulate IL-22 production in monocytes (Wolk

et al., 2002), IL-23 alone can stimulate IL-22 secretion in both

monocytes and CD11c+ DCs (Zheng et al., 2007; Zheng et al.,

2008). Importantly, in vivo studies elucidated that IL-22, pro-

duced both from T cells and elsewhere, was essential for host

defense against various infections (Aujla et al., 2008; Zheng

et al., 2008).
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Regulation of the Biology of Epithelial Cells by IL-22

Soon after the discovery of IL-22, it was realized that cells with

nonhematopoietic origin were probably targeted by IL-22.

Whereas the IL-10R2 chain is ubiquitously expressed, the ex-

pression of IL-22R is restricted to tissue-resident cells, espe-

cially those of epithelial origin (Aggarwal et al., 2001; Dumoutier

et al., 2000b). To date, the expression of IL-22R has not been re-

ported in immune cells, and immune cells seem not to be directly

responsive to IL-22 stimulation (Lecart et al., 2002; Wolk et al.,

2002; Wolk et al., 2004; Zheng et al., 2008). On the contrary,

IL-22 elicited very strong responses from many epithelial cells

or cell lines, including acinar cells, hepatocytes, keratinocytes,

and colon epithelial cells (Aggarwal et al., 2001; Andoh et al.,

2005; Dumoutier et al., 2000b). Data from in vitro studies with

various primary cells and cell lines implicate the potential roles

of IL-22 in host defense, inflammation, and tissue repair (Boni-

face et al., 2005; Sa et al., 2007; Wolk et al., 2004). First, IL-22 in-

duces proinflammatory responses, such as the production of cy-

tokines, chemokines, and acute-phase proteins, from many cell

types. Second, IL-22 drives the production of many antimicrobial

peptides, including b-defensins, S100-family proteins, and re-

generating-gene (Reg)-family proteins. Genome-wide searching

of potential downstream targets further uncovered a large group

of genes involved in tissue-repair and wound-healing responses

from keratinocytes when treated with IL-22 (Sa et al., 2007; Wolk

et al., 2006). Moreover, IL-22 also stimulates proliferation, abnor-

mal differentiation, and migration of various epithelial cells in vi-

tro (Boniface et al., 2005; Brand et al., 2006; Sa et al., 2007). To-

gether, these data strongly support a role of IL-22 in host defense

and epithelial-barrier function.

Role of IL-22 in Autoimmunity

The first hint of a pathological role of IL-22 in autoimmune dis-

eases comes from the study of its related family member, IL-

20. Transgenic mouse lines overexpressing IL-20 under the con-

trol of several different promoters all developed a skin phenotype

reminiscent of that of psoriatic skin, supporting a role of IL-20 in

the pathogenesis of psoriasis (Blumberg et al., 2001). IL-20 also

signals through IL-22R and IL-20R2 complexes, as well as

through IL-20R1 and IL-20R2 (Dumoutier et al., 2001a). Further-

more, IL-22 is upregulated in psoriatic skin, suggesting a similar

role in the pathogenesis of psoriasis for IL-22 (Wolk et al., 2006).

In vitro, IL-22 induces many psoriatic features from cultured re-

constituted human epidermis, further corroborating this premise

(Boniface et al., 2005). Recently, a critical role of IL-23 in the

pathogenesis of psoriasis was indicated on the basis of both

genetic-association study and human clinical data (Cargill

et al., 2007; Kauffman et al., 2004; Krueger et al., 2007; Lee

et al., 2004). IL-23 primarily targets immune cells (Kastelein

et al., 2007). IL-22, therefore, might be an obvious downstream

factor of IL-23 that mediates the crosstalk between infiltrating

immune cells, especially T cells, and keratinocytes in psoriatic

skin. Injection of IL-23 into a mouse ear causes an inflammatory

skin phenotype, characterized as leukocyte infiltration and epi-

dermal acanthosis (Zheng et al., 2007). The infiltrating CD4+

T cells display a Th17 cell phenotype with the expression of

both IL-17 and IL-22. These pathological features induced by

IL-23 are dramatically diminished in IL-22-deficient mice. The

reduction of the acanthosis observed in the ear after IL-23 ad-

ministration is accompanied by a decrease of Stat3 activation



Immunity

Review
in epidermal keratinocytes as well as reduced neutrophil infiltra-

tion (Zheng et al., 2007). Consistent with these observations,

administration of an IL-22-specific antibody ameliorates the

inflammatory skin disease in a murine model of psoriasis

(Ma et al., 2008). In conclusion, these data support a potential

pathological role of IL-22 in psoriasis.

Expression of IL-22 is also augmented in many other autoim-

mune diseases. The upregulation of IL-22 is detected both in

Crohn’s diseases (CD) and ulcerative colitis, as well as in preclin-

ical mouse IBD models (Andoh et al., 2005; Brand et al., 2006; te

Velde et al., 2007). In CD, the IL-22 serum amount correlates with

disease activity (Schmechel et al., 2008). IL-22 induces proin-

flammatory cytokines, as well as proliferation and migration of

several intestine epithelial cell lines (Andoh et al., 2005; Brand

et al., 2006). In vivo, IL-22 can stimulate the production of LPS-

binding protein, which is also elevated in the blood of CD pa-

tients (Wolk et al., 2007). Recent genetic studies identified the

association of the IL-23R pathway with the pathogenesis of

CD. Interestingly, the IL-23R gene variants seem to influence

the serum amount of IL-22 (Schmechel et al., 2008). IL-22 is

higher in the serum of carriers with IL-23R alleles that increase

CD risk than in that of carriers with IL-23R alleles that decrease

CD risk. However, as we discuss below, given the important

role of IL-22 in the control of bacterial infections in the gastroin-

testinal tract, whether IL-22 has a protective or pathogenic role in

IBD needs to be further elucidated. A recent study demonstrates

that, at least in some preclinical models of IBD, IL-22 elicits a

protective rather than pathological role (Sugimoto et al., 2008).

Elevated IL-22 is also detected in synovial tissues of rheuma-

toid arthritis (RA) patients, and IL-22 promotes the proliferation

and chemokine production of synovial fibroblasts (Ikeuchi

et al., 2005). The function of IL-22 in preclinical RA models has

not been reported. Similarly, the functional role of IL-22 has not

been examined in preclinical asthma models. IL-22, however,

is present in the bronchoalveolar lavage (BAL) fluid samples of

normal individuals and is reduced in BAL fluid samples from pa-

tients with acute respiratory-distress syndrome and sarcoidosis

(Whittington et al., 2004). In mice, direct administration of IL-17,

but not of IL-22, into the airway increases the recruitment of neu-

trophils and the expression of chemokines (Liang et al., 2007).

On the other hand, IL-22 production is elevated in the lymphoid

tissues from cystic fibrosis patients, and IL-22 plays an essential

role, as discussed below, in host control of the Gram-negative

pulmonary pathogen Klebsiella pneumoniae (Aujla et al., 2008).

These studies suggest that there might be a role for IL-22 in

asthma. A recent study shows that IL-17- and IL-22-expressing

human Th17 cells cross the blood-brain barrier efficiently, and

both IL-17 and IL-22 promote the disruption of the blood-brain

barrier in vitro and in vivo (Kebir et al., 2007). In preclinical

EAE, IL-22 is dispensable, despite the fact that IL-22 is a direct

downstream target of IL-23 and that IL-23 has essential patho-

genic functions in this model (Kreymborg et al., 2007).

In addition to its proinflammatory role, IL-22 also induces tis-

sue-repair and wound-healing responses from tissues, implying

that it might prevent tissue damage under certain inflammatory

conditions. This postulation was supported by studies in the

ConA-induced hepatitis model. IL-22 is substantially elevated

after ConA injection. IL-22 protects the liver injury by enhancing

the growth and survival of hepatocytes (Radaeva et al., 2004).
Studies with both IL-22- and IL-17-deficient mice further point

to a protective function of IL-22, but not IL-17, produced by

Th17 cells (Zenewicz et al., 2007). Consistent with these results,

IL-22 has also been shown to elicit a protective function in a rat

model of experimental autoimmune myocarditis (Chang et al.,

2006a). In conclusion, IL-22 can exert both pathogenic and

protective functions in autoimmune diseases, depending on

the specific situations and target cells.

Role of IL-22 in Infections

The induction of many antimicrobial peptides from various cell

types leads to the speculation that IL-22 might participate in

host defense for pathogens (Wolk et al., 2004). In individuals

who are resistant to HIV infection, IL-22 production by activated

T cells is substantially higher (Misse et al., 2007). IL-22 might be

protective through induction of the acute-phase protein SAA in

these individuals. A genetic-association study identifies IL-22

as a candidate in the control of mortality during Theiler’s virus-

induced encephalomyelitis (Levillayer et al., 2007). These two

studies support the involvement of IL-22 in the control of viral in-

fections. Additional studies are needed to confirm these hypoth-

eses and also to provide downstream mechanistic explanations.

Interestingly, in a polymicrobial peritonitis model, blocking of

IL-22 by mouse IL-22BP fusion protein reduces bacterial load

and organ damage, suggesting that IL-22 contributes to bacte-

rial spread and organ failure (Weber et al., 2007). This observa-

tion currently has not been confirmed, however, with high-affinity

neutralizing antibody or in IL-22-deficient mice. Given the role of

IL-22 in liver inflammation, IL-22-deficient mice have also been

tested with the infection of Listeria monocytogenes, a Gram-

positive intracellular bacterium (Zenewicz et al., 2007). Both in-

nate and adaptive immune responses against L. monocytogenes

are normal in the absence of IL-22. This result is not surprising,

given that CD8+ T cells and the Th1 response play more impor-

tant roles in the control of intracellular pathogens.

The expression of the IL-22 receptor on various epithelial cells

suggests that IL-22 could be involved in mucosal immunity dur-

ing infections. As mentioned above, IL-17 and IL-22 can syner-

gistically or additively increase antimicrobial proteins in the

skin keratinocytes (Liang et al., 2006). Similarly, primary human

bronchial epithelial cells express IL-17RA (McAllister et al.,

2005), IL-17RC (Kuestner et al., 2007), and IL-22R (Aujla et al.,

2008). Stimulation of these cells with IL-22 and IL-17A induces

the expression of several host-defense genes, including those

encoding human beta defensin -2 (DEFB4), IL19, CSF3, IL-1F9,

S100A7 and S100A12, DUOX2, CXCL1, CXCL5, and CXCL9,

as well as CCL3 (Figure 1). IL-22 also increases the clonogenic

potential of human bronchial epithelial cells and enhances

wound repair in these cells (Figure 1) (Aujla et al., 2008).

Th17 cells are enriched at the mucosal sites of infection in two

pathogenic challenge models (Happel et al., 2005; Mangan et al.,

2006). In the first model, infection of K. pneumoniae in the lung

augments the expression of both IL-23 and IL-17, and both IL-

23 and IL-17 are necessary for the host to elicit full immune re-

sponses to the infection (Happel et al., 2005). IL-17R-deficient

mice have reduced survival rates and fail to augment G-CSF re-

sponses, which leads to defective granulopoiesis. In the second

model, Citrobacter rodentium inoculation in the mouse colon

results in an increased number of CD4+ T cells that produce IL-

17. IL-23 is essential for host defense during the early phase of
Immunity 28, April 2008 ª2008 Elsevier Inc. 461
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infection, given that all IL-23-deficient mice succumb during the

second week of the infection whereas all wild-type mice survive

the infection (Mangan et al., 2006).

Is there a role of IL-22 in these two models? IL-22 is quickly

upregulated in both models (Aujla et al., 2008; Zheng et al.,

2008). Most importantly, disruption of the IL-22 pathway by

use of either neutralizing antibodies or IL-22-deficient mice com-

pletely compromises the ability of the host to control both infec-

tions, indicating an indispensable role of IL-22 in mucosal immu-

nity (Figure 1 and Figure 2). There are some similarities of the

biology of IL-22 in both models. In both models, IL-23 is abso-

lutely essential for IL-22 induction during the infection. IL-22 re-

stores mucosal immunity against K. pneumoniae in IL-23p19-

deficient mice (Aujla et al., 2008). Furthermore, in both models

IL-22 targets epithelial cells, although from different origins, to

elicit host immunity.

On the other hand, there are also differences in these models.

In the K. pneumonia infection model, IL-22 is induced in the lung

with kinetics similar to those of IL-17A, and both cytokines are

important for host defense (Aujla et al., 2008). As opposed to

IL-17A deficiency, neutralization of IL-22 is not associated with

diminished G-CSF or CXCL1. During C. rodentium infection in

the colon, IL-22 peaks around day 4 after bacterial inoculation.

IL-17, however, reaches its maximum expression on day 12,

and the IL-17 pathway is dispensable during the early phase of

C. rodentium infection (Zheng et al., 2008). Strikingly, the cellular

sources of IL-22 in both models are also different. T cells, pre-

sumably Th17 cells, are likely cellular sources of IL-22 and IL-

17 in the lung during K. pneumonia challenge (Aujla et al.,

2008). On the contrary, T cells, as well as B cells, are not neces-

sary for IL-22 induction in the colon during C. rodentium infection

(Zheng et al., 2008). Innate immune cells, such as DCs, are ac-

countable for the most of the IL-22 production during the early

phase of infection. Finally, the downstream defense mechanisms

induced by IL-22 are also distinct from each other in these

models. During K. pneumonia infection in the lung, IL-22 syner-

gizes with IL-17 to induce repair in lung epithelium and antimicro-

bial responses, including the production of proinflammatory cy-

tokines and chemokines, as well as production of Lipocalin from

lung epithelial cells. Lipocalin-2 is required for lung-epithelial kill-

ing of K. pneumoniae in vitro (Aujla et al., 2008) and killing of

E. coli in vivo (Flo et al., 2004) On the other hand, Reg-family an-

timicrobial peptides, such as RegIIIg and RegIIIb, are among the

key downstream anti-infectious agents that are induced by IL-22

from colon epithelial cells (Zheng et al., 2008). RegIIIg and

RegIIIb can directly kill Gram-positive bacteria and induce ag-

gregation of E.coli in vitro, respectively (Cash et al., 2006; Io-

vanna et al., 1991). Despite these differences, these studies con-

clusively support the essential role of IL-22 in mucosal immunity

for the control of various infections, especially extracellular

bacterial infections.

These results also have relevance to human infections. The

IL-22 pathway is intact in both human lung and colon epithelia.

Although patients with cystic fibrosis have large numbers

of P. aeruginosa in the lung, bacteremia with P. aeruginosa

is rare. These patients have significantly elevated basal IL-22

responses and stimulated IL-22 responses in their hilar lymph,

and this might well be required for the mucosal immunity that

prevents bacteremia in these patients (Aujla et al., 2008).
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Conclusions
The discovery of the Th17 cell subset and the biological func-

tions of its effector cytokines substantially advanced our under-

standing of the roles of CD4+ T cells in adaptive immunity, as we

discussed above. Despite the recent progress, however, many

issues remain to be addressed. First, conditions promoting

human Th17 cell differentiation are not universally established.

Second, how IL-6, TGF-b, IL-23, and other factors control

Th17 cells in vivo under various inflammatory conditions is still

largely unclear. Finally, Th17 cells and their effector cytokines

have both pathological and protective roles during inflammation.

The balances of these functions are not well understood during

the processes of many autoimmune and infectious diseases. An-

swers on these questions are important for the development of

future therapeutic strategies to treat various autoimmune and in-

fectious diseases. At present, therapies that modulate the Th17

cell pathway are being tested in the clinic for the treatment auto-

immune diseases. For example, a p40 antibody has been tested

in psoriasis and IBD, as has an IL-6R antibody in RA. The effector

cytokines of Th17 cells, such as IL-17, IL-21, and IL-22, are po-

tential future therapeutic targets. A challenge is to figure out the

balance between their beneficial and pathological roles given the

complicated functions of these cytokines in inflammation.
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